Building stemmers for Information Retrieval and related domains

Nikitas N. Karanikolas,
Department of Informatics and Computer Engineering, University of West Attica (UniWA), Athens, Greece, nnk@teiath.gr

Introduction

about stemmers

- They are used in various text processing tasks: search engines, document/text summarizers, document/text classifiers, etc,
- Stemmers produce normalized forms of words in order to handle as one attribute all the inflected word-forms existing in documents for the same word,
- Alternative solution is the usage of lemmatizers that conflate a set of words in their etymological root.

Stemmer＇s and Lemmatizer＇s examples

Greek

－Tpánع弓a（Bank），
－Tрáпとそ६ৎ（Banks），
－Трапє弓ккغ่ऽ（Banking），
－Tрап६Zıк่（Banking）
－Stemmer＇s result：ТРАП，－Stemmer＇s result：PROV，
－Lemmatizer＇s result： TРАПЕZA

Albanian

－PROVË
－PROVOHEJ
－PROVONTE
－PROVUAR
－Lemmatizer＇s result： PROVË

Stemming example for Serbian

	singular	plural
nominative	во̀да	во"де
genitive	во̀де	во́да̄
dative	води	водама
accusative	воду	воде
vocative	водо	воде
locative	води	водама
instrumental	водом	водама

To complicate more: водица
The stem could be вод

Nikitas N. Karanikolas - U. of Belgrade - Febr 2019 - Building Stemmers for IR

Rule based stemmers

- Porter's stemmer uses five levels (granularity, different rules in each level)
- Lovin's stemmer uses 2 steps (suffix elimination and recording step)
- Paice's stemmer is an iterating algorithm using the same rules in each step

The purpose of research

- The domain of interest is the creation of a stemmer, when the development team does not have knowledge of the target language of stemmer.
- Our approach requires two resources:
- a list of available suffixes used in the target language and
- a training set of words in the target language with their translations in the native language of the experts.
- Both resources can be easily constructed by speakers of both languages (target and experts' native language).
- Speakers of both languages are needed to have a secondary or high school level (no university degree).

Overview of Approach

- The approach assumes a very simple (primary or bootstrapping) stemmer that provides stems by simply removing the longer suffix that match with a given word.
- Experts express their arguments regarding the results of the primary stemmer.
- The final step is a trial and error approach that permits to an IR (information retrieval) expert to dynamically construct a better stemmer, without coding even a single line of code.

Approach in Data Flow Diagram

Processes:

- 1. Primary Stemmer
- 2. Argument Declaration
- 3. Stemmer Builder
- 4. Evaluator
- Suffixes
- Words with Translations
- Arguments
- Primary Stemmer's Stems
- Trial Stemmer Stems

Experts' Arguments

Examples of Experts' argumentation (1/3)

Ref. num	Word	Stem	Translation	Argument
1489	HIMARË	HIM	Ol Ú $\mu \mathrm{VoI}$	CS (HIM)
1490	HIMNET	HIMN		
1491	HIMNI	HIM	o Úhvos	
1492	HIMNIN	HIM	Tov Ú $\mu \mathrm{vo}$	
1493	HIMNIT	HIM	TOU Ú䶹VOU	

Nikitas N. Karanikolas - U. of Belgrade - Febr 2019 - Building Stemmers for IR

Examples of Experts' argumentation (2/3)

Ref. num	Word	Stem	Translation	Argument
1963	KOSTA	KOST	óvoua avӨрஸ்поu	DS
1964	KOSTON	KOST	кобтiそ̌ı	

Nikitas N. Karanikolas - U. of Belgrade - Febr 2019 - Building Stemmers for IR

Examples of Experts' argumentation (3/3)

Ref. num	Word	Stem	Translation	Argument	
3172	PËRBEHEJ	PËRBE	атотєлвітаı	DS	CS_{1}
3173	PËRBËJNË	PËRBË	атотغлои́vtaı		
3174	PËRBËN	PËRB	атот $¢ \lambda \varepsilon$ í		
3175	PËRBËNTE	PËRBË			
3176	PËRBËRË	PËRbËR	атотелєіта৷		
3177	PËRbËRJE	PËRbËR	бúvөron		
3178	PËRBËRJEN	PËRBËR	η đúveron		

Nikitas N. Karanikolas - U. of Belgrade - Febr 2019 - Building Stemmers for IR

Kinds of arguments and facilities

- Kinds
- Complaints
- Verifications
- Why expressing verifications
- Facilities
- Movements
- Rules for x in CS(x)

Complaints - CS

Ref.Num.	Word	Stem	Translation	Argument
3562	PRONARET	PRONAR	ІठІоктท́teऽ	CS (PRON)
3563	PRONAREVE	PRONAR	TWV ІठıоктףTढ́v	
3564	PRONAVE	PRON	TWV ıסıоктףбıஸ́v	
3565	PRONË	PRO	ıঠıоктпбі́а	
3566	PRONES	PRON	TПऽ ıסıоктПбías	

Nikitas N. Karanikolas - U. of Belgrade - Febr 2019 - Building Stemmers for IR

Complaints－DS／CS

Ref．Num．	Word	Stem	Translation	Argument	
2049	KUKËS	KUK	тó入n tņ A入ßavías	DS	CS_{1}
2050	KUKËSIT	KUK	TทS mó入ņ aUtńs		
2051	KUKULL	KUK	Kои́K入 ${ }^{\text {a }}$		CS_{2}

Nikitas N．Karanikolas－U．of Belgrade－Febr 2019 －Building Stemmers for IR

Complaints - DS/CS

Ref.Num.	Word	Stem	Translation	Argument	
1059	FILL	FILL			CS_{1}
1060	FILLIM	FILL		DS	CS_{2}
1061	FILLIMI	FILL			
1062	FILLIMIN	FILL			
1063	FILLIMISHT	FILL			
1064	FILLIMIT	FILL			
1065	FILLOI	FILL			
1066	FILLOJ	FILL			
1067	FILLOJMË	FILL			
1068	FILLOVA	FILL			
1069	FILLUA	FILL			
1070	FILLUAN	FILL			
1071	FILLUAR	FILL			

Nikitas N. Karanikolas - U. of Belgrade - Febr 2019 - Building Stemmers for IR

Verifications - CS

Ref.Num.	Word	Stem	Translation	Argument
1073	FILOZOFËT	FILOZOF		
1074	FILOZOFINË	FILOZOF		CS (FILOZOF)
1075	FILOZOFISË	FILOZOF	TпS ¢i入oбoبías	

Nikitas N. Karanikolas - U. of Belgrade - Febr 2019 - Building Stemmers for IR

Verifications - DS/CS

Ref.Num.	Word	Stem	Translation	Argument	
176	ARMATA	ARMAT	отрато́s	DS	CS ${ }_{1}$
177	ARMATËS	ARMAT	tou otpatoú		
178	ARMATOSUR	ARMATOS			CS_{2}
179	ARMATOSURA	ARMATOS	отлıб \quad ¢́va		
180	ARMË	ARM	о́т入а		CS_{3}
181	ARMËT	ARM	та о́тла		
182	ARMËVE	ARM	T $\omega \mathrm{v}$ óm $\lambda \omega \mathrm{v}$		

Nikitas N. Karanikolas - U. of Belgrade - Febr 2019 - Building Stemmers for IR

Why expressing verifications

- The need to emphasize or verify the results of the primary stemmer comes from the algorithm used to compare the harmonization of a given stemmer with the expert's arguments.
- The matching factor (in an off hand simplification) is calculated as the number of experts arguments (CS and DS/CS) that are verified by the stemmer's results (stems), normalized by the number of arguments.
- The rest stemmer's results (stems that correspond to words which are outside the experts' arguments) contribute only slightly to the matching factor.
- The criterion for a stem outside the experts' arguments to contribute (increase slightly the matching factor) is that it differs from its adjacent ones.
- This requirement/criterion is the only difference against some earlier version.

Reordering \& Complaints - CS

Ref.Num.	Word	Stem	Translation	Argument
1554	IDENTIFIKUARA	IDENTIFIK	пробठıорıо μ v́va	\varnothing
1552	IDEJA	IDE	П Іঠ¢́ α	CS(IDE)
1553	IDENË	ID	TףV ıठદ́ α	
1555	IDEVE	ID		

Nikitas N. Karanikolas - U. of Belgrade - Febr 2019 - Building Stemmers for IR

Reordering \& Complaints- DS/CS

Ref.Num.	Word	Stem	Translation	Argument	
3511	PRILL	PRI	Ampídios	DS	CS ${ }_{1}$
3523	PRISJA	PRIS	пері́ $\mu \varepsilon v \alpha$		CS_{2}
3524	PRISNIN	PRIS			
3525	PRITËN	PRIT	тعрíuعvav		
3526	PRITET	PRI			
3527	PRITJEN	PRIT			
3528	PRITUR	PRIT	¢İó乡̇Vos		

Nikitas N. Karanikolas - U. of Belgrade - Febr 2019 - Building Stemmers for IR

Reordering \& Verifications - CS

Ref.Num.	Word	Stem	Translation	Argument
3576	PROVINCË	PROVINC	عтархі́a кра́тоия	\varnothing
3575	PROVË	PROV	ठокıии́	CS(PROV)
3577	PROVOHEJ	PROV	סокıиá̧ovtav	
3578	PROVONTE	PROV	бокі́иа̧ॄ	
3579	PROVUAR	PROV	ठокıиаб μ v́vo	

Nikitas N. Karanikolas - U. of Belgrade - Febr 2019 - Building Stemmers for IR

x in CS(x) - example

Ref.Num.	Word	Stem	Translation	Argument
2014	KRYER	KR	$\varepsilon К т \varepsilon \lambda \varepsilon \sigma \mu \varepsilon ́ V O \bigcirc$	CS (KRYER)
2015	KRYERA	KRYE	то $\varepsilon К T \varepsilon \lambda \varepsilon \sigma \mu \varepsilon ́ v o$	
2016	KRYERJEN	KRYER	тףV $\varepsilon К т \varepsilon ́ \lambda \varepsilon \sigma \eta$	

X can be one of the available stems in set, but which one?
KRYER:
exist in every
longest
most frequent

Nikitas N. Karanikolas - U. of Belgrade - Febr 2019 - Building Stemmers for IR

x in CS(x) - example

Ref.Num.	Word	Stem	Translation	Argument
2063	KUNDER	KUND	катá	CS (KUND)
2064	KUNDËRSHTIM	KUNDËRSHT	غ́votaon	
2065	KUNDËRSHTIVE	KUNDËRSHT	عvavtiట́Өŋкєऽ	
2066	KUNDËRSHTUAN	KUNDËRSHT	Evavtí̈Өŋкка	

KUND:

exist in every
longest
most frequent
Relax the rule, give priority to the left (up)
Nikitas N. Karanikolas - U. of Belgrade - Febr 2019 - Building Stemmers for IR

x in CS(x) - requirements

- Requirement to select a stem that exists in every word of the set. It comes from the need to get the stem with simple suffix removal (no replacements).
- Requirement to be the longest one. It comes from the need to not over-conflate (conflate with neighbour words which have other meanings).
- The requirement to be the most frequent. It is because it leaves fewer cases that impose adaptation of stemmer.

Database

Database structure

Nikitas N. Karanikolas - U. of Belgrade - Febr 2019 - Building Stemmers for IR

Database

U. of Belgrade - Febr 2019 Building Stemmers for IR

codified expert's CS argument

Ref. num	Word	Stem	Translation	Argument
1489	HIMARË	HIM	oı U̇ $\mathrm{uvoı}$	CS (HIM)
1490	HIMNET	HIMN	T $\omega \mathrm{V}$ u v V'่	
1491	HIMNI	HIM	o Úuvos	
1492	HIMNIN	HIM	Tov úpvo	
1493	HIMNIT	HIM	TOU Ú $\mu \mathrm{Vou}$	

INSERT INTO arguments values (29, 3, 'CS', 'HIM');
INSERT INTO about values $(29,1489) ;$
INSERT INTO about values $(29,1490)$;
INSERT INTO about values $(29,1491)$;
INSERT INTO about values $(29,1492) ;$
INSERT INTO about values $(29,1493) ;$

Database

codified expert's DS/CS argument

Evaluator

Matching Algorithm

- Intra subset uniformity (how much uniform are the stemmer's results intra subsets)
- Inter subsets unevenness (how much unevenness are the stemmer's results inter subsets)
- Factors combination (relative contribution between previous factors)

Interface for evaluating stewithilixisis (Evaluator)

Available Stemmers

```
5 plus 2nd and 3rd step [STEMMER:20]
5 plus SplitCouples=F and 2nd and 3rd step [STEMMER:21]
5 plus OneVC required and 2nd and 3rd step [STEMMER:22]
5 plus Splitcouples=F, OnevC req. and 2nd + 3rd step [STEMMER:23]
23-SE゙-TET [STEMMER:24]
21-SË-TET [STEMMER:25]
```

Available Stemmers, Experts or Group of Experts

```
21 -SË -TET [STEMMER:25]
21-KIHËSHIN - QOFSHIM - QOFSHIN [STEMMER:26]
nnk's stems and arguments [EXPERT:2]
stamou's stems and arguments [EXPERT:3]
galiotou's stems and arguments [EXPERT:4]
irst trial [G0E:1]
<
>
```

Do Evaluation

$1^{\text {st }}$ Builder

$1^{\text {st }}$ Builder: $1^{\text {st }}$ step - Remove the longest suffix under 4 (optional)

Nikitas N. Karanikolas
U. of Belgrade - Febr 2019

Building Stemmers for IR

- Active Suffix condition (per suffix). Suffixes marked as inactive are not checked and consequently are not candidate for removal.
- At Least Remain Letters arithmetic parameter. A suffix removal is permitted only when the remaining word part contains a number of letters which is equal or greater than the parameter's value.
- One VC optional condition. If enabled, a suffix removal is permitted only when the remaining word part contains at least one VC pattern (where V is a sequence of one or more vowels and C is a sequence of one or more consonants). Otherwise, it doesn't matter if no one VC remains after suffix removal.
- Split Couples optional condition. If disabled, a suffix removal is permitted only when the last letter of the remaining word part followed by the first letter of the suffix being removed do not constitute a Couple. Otherwise, the suffix is removed without checking if a Couple is split.

$1^{\text {st }}$ Builder: $2^{\text {nd }}$ step - Remove the longest suffix under 3 optional and 1 mandatory condition

- Active Suffix optional condition (per suffix).
- At Least Remain Letters optional arithmetic parameter.
- Split Couples optional condition.
- VCVCVC mandatory condition. The suffix removal is permitted only when the remaining word part contains at least the VCVCVC pattern.

$1^{\text {st }}$ Builder: $3^{\text {rd }}$ step - Remove ending consonants under 1 optional and 1 mandatory condition

- At Least Remain Letters optional arithmetic parameter.
- Do not Split Couples mandatory condition. The ending consonant is removed if the previous letter is also a consonant and together they do not constitute a Couple.
- Removal is repeated in case of multiple ending consonants.

$1^{\text {st }}$ Builder: Interface

Configure and Run the Dynamic Stemmer

Sufix	Enabled	
KIHËSHIN	\checkmark	-
QOFSHIM	\square	=
QOFSHIN	\checkmark	
ËMËSIVE	\checkmark	
ËTARËVE	\checkmark	
HESHIM	\checkmark	
HESHIN	\square	
HESHIT	\checkmark	
IMISHT	\checkmark	
ISTRIT	v	
KISHIM	v	
KISHIN	\square	-
MCIT	,	\checkmark

Config Stemmer using the above

SC:F, 1VC:F, Remain:1, 2nd suf rem, rem multi end C, -QOFSHIM|
Do Dynamic Stemming

$1^{\text {st }}$ Builder: Overview

- So far, our approach for building stemmers was based in one set of suffixes that were used in both of the first two steps.
- The application of the second step was optional and this was one of the user's interventions in order to create/define alternative trial stemmers.
- Enabling the second step was guidance to a Paice like stemmer. There were also other available configuration options (split or do not split couples; number of remaining letters after suffix removal; etc) that the user could use in order to create/define alternative trial stemmers.
- There was also a third (optional) step for removing multiple ending consonants. The later was guidance to a Lovins like stemmer.
- However, the set of (selected by user) active suffixes was the same in both (first and second) steps, while the operation of the third step was not affected by the set of active suffixes.

Nikitas N. Karanikolas - U. of Belgrade - Febr 2019 - Building Stemmers for IR

$2^{\text {nd }}$ Builder

Different suffixes for each step

- The available classical solutions for stemming words (e.g. Porter's) gave us another paradigm where the suffixes (endings) removed in each step are not same.
- Since many researchers still use the Porter's stemmer, we decided to adopt this paradigm and provide to the user the ability to enable/disable different suffixes for each step
- As we will see the builder uses a table with six columns. Columns two (Step1) and four (Step2) provide the user the abilities to:
- disable Suffix (provided in the first column) in both steps;
- disable Suffix in first step and enable it in the second step;
- enable Suffix in first step and disable it in the second step;
- enable Suffix in both steps.

2nd Builder: B Biterface

Wizard in $2^{\text {nd }}$ Builder

The idea behind the Builder's Wizard

Training Set

Ref.Num	Word	Stem	Argument					
			Counters					
		Suffix	1-PU	1-NU	2-PU	2-NU		

- Only explicit CS and implicit (passive) CS arguments are considered. The DS/CS arguments are not considered.
- For each line of the examined arguments the algorithm tries to adapt the (primary) stemmer's result with the x of the $\mathrm{CS}(\mathrm{x})$ argument.
- For this adaptation some suffixes should enabled/disabled for the first or the second step. The relevant counter of each suffix participating in the adaptation is increased by one

Nikitas N. Karanikolas - U. of Belgrade - Febr 2019 - Building Stemmers for IR

2 examples of Wizard's operations (quadruples and relevant suffixes)

RefNum	Word	Stem	Argument
3562	PRONARET	PRONAR	PRON

Nikitas N. Karanikolas
U. of Belgrade - Febr 2019

Building Stemmers for IR

Suffix	1-PU	1-NU	2-PU	2-NU
AR			+1	
ET	+1			

RefNum	Word	Stem	Argument
2015	KRYERA	KRYE	KRYER

Suffix	1-PU	1-NU	2-PU	2-NU
RA		+1		
A	+1			

Wizard's filters that activate / deactivate suffixes

if (Step1-NU > Step1-PU)
Disable Suffix on 1st step
if (Step2-PU > Step2-NU)
Enable Suffix on 2nd step

Improvements of the Matching Algorithm

Evaluation

Evaluation - dimensions

- by 5000 distinct words
- 2100 quadruples of the form (<Ref.Num.>, <Word>, <Stem>, <Argument>)
- 470 stopwords (adj, prep, aux.verbs, etc)
- 380 suffixes
- 5 IR experts
- 4 Builder configurations

4 builder configurations Evaluation results for expert V

Wizard's configuration
V ᄀSC RL:3 MWL:5
V ᄀSC RL:1 MWL:5
V SC RL:3 MWL:5
V SC RL:1 MWL:5

Harmonization rates
$300.40 / 405=74.2 \%$
$295.40 / 405=72.9 \%$
$298.65 / 405=73.7 \%$
$292.65 / 404=72.3 \%$

SC = split couples
RL = remain letters
MWL = minimum word letters to apply stemming

Best evaluation result per Expert

Expert	harmonization with primary stemmer	harmonization with best wizard's stemmer	Improvement
V	$66,4 \%$	$74,2 \%$	$11,7 \%$
F	$66,1 \%$	$69,5 \%$	$5,1 \%$
A	$61,1 \%$	$69,8 \%$	$14,2 \%$
S	$69,8 \%$	$81,3 \%$	$16,5 \%$
K	$73,6 \%$	$80,7 \%$	$9,6 \%$

Average improvement 11.4\%

Evaluation Results - Best Stemmer configuration

- VFASK \neg SC RL:3 MWL:5
- Overal improvement is 9.6% (74.1/67.6 = 1.096),
- Slightly less than the average improvement.
- This is an expected reduction since the more arguments there are, the more the conflicts there are by activation/deactivation of suffixes

Lessons Learned

Lessons Learned

- It is not so easy to explain to Experts the rules of how to express their arguments using Excel.
- Even, if they say that they have understood, they do not follow the rules.
- It is very laborious to convert experts' arguments into SQL statements.
- We have to always emphasize and remind experts that verification arguments are very important.

Couples

Couples

- We use the term couples for digraph vowels, digraph consonants, and diphthongs.

Couples in Polish language

- Polish language has 32 letters and 7 digraphs.
- Each Polish digraph corresponds to a single sound and actually to a single consonant (digraph consonants).
- Couples (consonant digraphs) in Polish: ch cz dz dź dż rz sz

Couples in Albanian language

- Couples (consonant digraphs) in Albanian are:
dh gj Il nj rr sh th xh zh
- dh \rightarrow Greek δ
- nj \rightarrow Serbian Њ
- th \rightarrow Greek θ
- xh \rightarrow Serbian 万 or \downarrow

Couples in Greek language

- Couples can be vowel digraphs and diphthongs in Greek. Some examples are:
عl ol aU عU an ...
- $\varepsilon i \rightarrow$ к $\lambda \varepsilon i v \omega$
- о ו \rightarrow áv $Ө \rho \omega$ по
- $\varepsilon u \rightarrow$ عú入oүo
- an \rightarrow aŋठóvı

Couples in Serbian language

- Serbian/Cyrillic not having ???
- Serbian/Latin official
- Dž (ப!)
- Nj (Њ)
- Lj (Љ)
- Serbian/Latin unofficial
- Dj (D, b)

Nikitas N. Karanikolas - U. of Belgrade - Febr 2019 - Building Stemmers for IR

Split couples

- Our system offers the "split couples" as a configurable parameter.
- This did not be useful in previous experiments (Albanian language). Albanian language do not permit splitting digraphs during the application of inflectional rules that produce words.
- However, the Polish language justified our choice. The Polish words "koszony" (participle, passive, present perfect, male, singular, nominative) and "kosić" (verb, active, present, subjunctive, singular, second person) are inflected forms of verb barber (to cut someone's hairs).
- The first one contains the digraph "sz" while the second one has only the letter "s".

Conclusions

Conclusions

- It seems that our methodology offers the proper facilities for building stemmers for various languages.
- We have managed to create stemmers for
- The Polish language,
- The Albanian language.
- We need only basic knowledge for the target language:
- Alphabet,
- Couples (digraphs, diphthongs, etc),
- a list of suffixes,
- few documents to extract words.
- Optional we need also:
- Translations of words into Experts' native language,
- A list of stopwords.

Future Work

Future work

- extend the Wizard in order to also consider the DS/CS arguments
- An internal to the system Alphabet Reduction should be very interesting. In such case not any accent or diacritics removals should be conducted outside the system (before data insertion).
- to build a stemmer for Serbian, Bulgarian, Romanian, Croatian, etc.

Our previous work in this domain

- Nikitas N. Karanikolas, Bootstrapping the Albanian Information Retrieval, 4th Balkan Conference in Informatics, September 17-19, 2009, Thessalonica, Greece, IEEE Computer Society's Conference Publishing Services and IEEE Xplore
- Nikitas N. Karanikolas, A methodology for building simple but robust stemmers without language knowledge: Overview, data model and ranking algorithm. CompSysTech'2013: 14th International Conference on Computer Systems and Technologies, June 2013, Ruse, Bulgaria. ACM ICPS, doi:10.1145/2516775.2516783
- Nikitas N. Karanikolas, A methodology for building simple but robust stemmers without language knowledge: Stemmer configuration. Procedia, Social and Behavioral Sciences, vol. 147, pp. 370-375, 2014, doi:10.1016/j.sbspro.2014.07.113
- Nikitas N. Karanikolas, Supervised learning for building stemmers. Journal of Information Science, Vol. 41 (3), pp. 315328, 2015, doi:10.1177/0165551515572528
- Nikitas N. Karanikolas, "Building Stemmers for the Polish Language". PCI 2016, November 10-12, 2016, Patras, Greece

Building stemmers for Information Retrieval ...

- Thank you for your attention,
- I will try to answer Questions.

Building stemmers for Information Retrieval

- AUTHOR:
- Nikitas N. Karanikolas,
- Professor,
- Dept. of Informatics and Computer Engineering,
- University of West Attica, Athens, Greece
- http://users.teiath.gr/nnk/
- nnk@teiath.gr, nnk@uniwa.gr

